# Internet Security

CSS 322 – Security and Cryptography

#### Contents

- Review of Internet Architecture
- Network Layer Security
  - IPsec
- Transport Layer Security
  - TLS
    - Used by HTTPS and others
- Email Security
  - PGP

### Internet Architecture





# IPv4 Datagram Header



### Internet Protocols

Layers

Example Protocols

Implementation

**Application** 

**Transport** 

**Network** 

Data Link/MAC

**Physical** 

HTTP, FTP, SSH, SMTP, DNS, DHCP, H.323, Messenger, BitTorrent, ...

TCP, UDP

IP

Ethernet, Wireless LAN, ADSL, SDH/PDH, ATM, ... User-level Applications

**Operating System** 

Network Interface Hardware

### Security in Standard Internet Protocols

- The Internet was originally used by researchers, academics and government employees in 1970's and 1980's
  - No need for in-built security
    - Everyone was trustworthy; if you wanted security, simple to use proprietary application between users
  - As a result, most Internet protocols do not have any security mechanisms
    - IP, TCP, UDP, HTTP, FTP, SMTP, DNS, ...
- Growth and commercialisation of Internet in 1990's
  - Businesses, governments, consumers depend on Internet
  - Significant growth in malicious users
    - Financial, political, personal motivations
  - Security is now vital
- Most Internet security protocols are add-ons or enhancements to existing protocols
  - IP/IPsec; TCP/TLS; Telnet/SSH, FTP/SSH, ...

### Internet Security Protocols/Standards

#### **Internet Protocols**

HTTP, FTP, SSH, SMTP, DNS, DHCP, H.323, Messenger, BitTorrent, ...

TCP, UDP

IΡ

Ethernet, Wireless LAN, ADSL, SDH/PDH, ATM, ...

#### Security Protocols and Standards

Secure Shell (SSH); Secure Electronic Transactions (SET), DNSSEC, HTTPS, Secure SMTP, PGP, S/MIME...

Secure Sockets Layer (SSL), also called Transport Layer Security (TLS)

IPsec – optional addition to IPv4 (built-in with IPv6)

### **IPsec**

**Network Layer Security** 

### **IPsec**

- Internet Engineering Task Force (IETF) defined RFC 2401 (Internet security architecture)
  - IPsec is optional for IPv4 and mandatory in IPv6
    - Mandatory: implementations must support it; but users do not have to use it
  - Implemented as extension headers for IP
- Functionality offered by IPsec:
  - Authentication: verify the sender of IP datagrams
  - Confidentiality: encrypt contents of IP datagrams
  - Data Integrity: guarantee integrity of IP datagrams
  - Key Management: secure exchange of keys
- Allows all traffic to be encrypted at IP (network layer) level
  - Can provide security for all Internet applications (web browsers, email, e-commerce, ...)
  - No need to change application or transport protocol software
    - Must have IPsec support on selected PCs, routers, firewalls

# Example IPsec Scenario



### **IPsec Components**

- Security Association (SA)
  - Sender and receiver must establish relationship, called Security Association
  - Traffic sent within that SA is given services agreed upon between sender and receiver
- Encapsulating Security Payload (ESP)
  - Allows for encryption of payload (e.g. TCP packet), as well encryption plus authentication of payload
- Authentication Header (AH)
  - Separate from ESP, allows for authentication-only of payload
- Key Management
  - Mechanisms for exchanging keys
  - Two automated protocols
    - Oakley: based on Diffie-Hellman secret key exchange
    - Internet Security Association and Key Management Protocol (ISAKMP): framework for using different algorithms for key exchange

### **Security Association**

- SA is one-way: sender to receiver
  - That is, for traffic from A to B need one SA; for traffic from B to A need another SA
- SA is identified by:
  - Security Parameters Index (SPI): carried in AH and ESP headers
    - Allows A and B to identify the agreed upon algorithms/parameters used for this SA
    - For a SPI, A and B store the relevant parameter values in a local database
      - Parameters include: sequence numbers, encryption/authentication algorithms and keys, lifetime of SA, protocol mode (tunnel or transport) and others
  - IP Destination Address
  - Security Protocol Identifier. indicates either AH or ESP (depend on which one is used)

### **Authentication Header**

- AH provides two services for IP datagrams
  - Integrity: ensure payload is not changed
  - Authentication: verify the identity of user
- AH uses a Message Authentication Code
  - Users must share a secret key



### AH Services and Algorithms

- AH provides authentication
  - MAC requires sharing of secret key; the sending having the correct secret key authenticates that user
- AH provides integrity check of packet
  - HMAC-MD5 and HMAC-SHA1 must be supported (others are optional)
  - Sender calculates MAC from:
    - IP header fields that do not change (immutable) or are predictable
    - AH fields (except Authentication Data field)
    - Entire upper-layer packet (e.g. TCP header, HTTP header and HTTP data)
  - Only first 96-bits of MAC are sent (in Authentication Data field)
  - Receiver checks the MAC upon receipt of packet
- AH can prevent replay attacks
  - Sequence number in header is used to identify replayed packets

## **Encapsulating Security Payload**

- ESP provides several services for IP datagrams
  - Encryption (confidentiality) of IP datagram
  - Authentication of IP datagram (optional)
  - Integrity of IP datagram



### **ESP Algorithms**

- Encryption
  - Mandatory to support DES; many algorithms are optional:
    - 3DES, RC5, IDEA, CAST, Blowfish, ...
- Authentication
  - Same as AH: HMAC-MD5 and HMAC-SHA1 are mandatory

#### **Protocol Modes**

- Transport Mode
  - Apply encryption or authentication end-to-end
    - E.g. from PC to PC
  - Original IP header is not protected
    - Only protected TCP/UDP and application layer data

- Tunnel Mode
  - Apply encryption or authentication from intermediate device
    - E.g. from router to router or from router to PC
  - Original IP header is protected
    - Protect IP plus TCP/UDP plus application layer data
  - Often used for creating Virtual Private Networks (VPNs)

### **AH and Protocol Modes**



- Transport: end-to-end
- Tunnelling: end-to-intermediate, or intermediate-to-intermediate

#### AH and Protocol Modes

Original IP datagram (before IPsec)



AH with Transport Mode:



AH with Tunnelling Mode:



## **ESP** and Transport Mode



- PCs support IPsec
- Encrypt traffic end-to-end; PC-to-PC

# **ESP** and Tunnelling Mode



- Hosts/PCs send normal IP traffic (unencrypted)
- Routers at edge of local network creates an IPsec tunnel to other network

#### **ESP and Protocol Models**

Original IP datagram (before IPsec):



ESP and Transport Mode:



ESP and Tunnelling Mode



# Summary of Protocol Modes

|                | Transport                                               | Tunnel                                                                               |
|----------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|
| AH             | Authenticate IP payload and selected parts of IP header | Authenticates entire inner IP packet (payload plus header) and parts of outer header |
| ESP            | Encrypts IP payload                                     | Encrypts entire inner IP packet                                                      |
| ESP with Auth. | Encrypts IP payload; authenticates IP payload           | Encrypts entire inner IP packet; authenticates inner IP packet                       |

# Summary of IPsec Services

|                                      | AH | ESP (encrypt only) | ESP (encrypt + auth.) |
|--------------------------------------|----|--------------------|-----------------------|
| Access control                       | ✓  | ✓                  | ✓                     |
| Data integrity                       | ✓  |                    | ✓                     |
| Data origin authentication           | ✓  |                    | ✓                     |
| Anti-replay                          | ✓  | ✓                  | ✓                     |
| Confidentiality                      |    | ✓                  | ✓                     |
| Limited traffic flow confidentiality |    | ✓                  | <b>√</b>              |

### Applications of IPsec

- Connecting branches/offices securely over the Internet
  - Create a Virtual Private Network using IPsec from Office A to Office B
    - Use of Internet to connect offices is cheaper than dedicated lines (e.g. DSL, E1, ATM)
    - Use ESP in tunnelling mode
- Secure remote access over Internet
  - Employee connects from home/hotel via a ISP to office
    - VPN from user PC to office router
    - Use ESP in tunnelling mode
- Web sites and e-commerce applications
  - IPsec can be used as an alternative or complement to HTTPS and similar protocols
    - Use ESP in transport mode

# TLS

**Transport Layer Security** 

### Secure Socket Layer

- SSL originally developed by Netscape
  - SSL v3.1 is known as Transport Layer Security (TLS); develoed by IETF
  - We will treat SSL and TLS as the same
- Provides security services between TCP and applications that use TCP
  - HTTP, FTP, SMTP, …
- SSL is commonly used for Web security
  - HTTPS is simply HTTP on top of SSL

### SSL versus IPsec





- IPsec is implemented in operating system at IP layer
  - Can be used by any Internet application
- SSL can only be used by applications that use TCP
  - Many real-time and messaging applications use UDP, not TCP
  - Implementation of SSL:
    - Option 1: Implement in operating system or common library so any application can use (e.g. OpenSSL library)
    - Option 2: Applications implement their own instance of SSL
      - E.g. web browsers like IE and Firefox, and web servers like Apache implement SSL

### SSL Architecture

- SSL includes two layers:
  - Record Protocol: provides confidentiality and integrity of messages
  - Management layer:
    - Handshake protocol to agree upon parameters upon start
    - Change cipher protocol to change to the next cipher in the session
    - Alert protocol to alert the other side that something has happened
      - E.g. unexpected message, incorrect MAC, handshake failure, illegal parameter, bad certificate, certificate expired, ...



### SSL Record Protocol

- Confidentiality provided using symmetric key encryption
- Integrity provided using Message Authentication Code



## SSL Encrypt and MAC Algorithms

- Currently supported symmetric key algorithms for encryption:
  - Block ciphers
    - AES, IDEA, RC2, DES, 3DES, Fortezza
  - Stream ciphers
    - RC4
- MAC
  - MD5 or SHA1
  - TLS uses both MD5 and SHA1 and XORs the output together
    - Useful if one algorithm is considered insecure

### SSL Handshake Protocol

- Performed before any data is sent. Four phases:
  - Create connection and agree upon security capabilities
    - Send HELLO messages between client and server
    - HELLO messages can contain list of encryption, MAC and compression algorithms implemented
  - Server Authentication and Key Exchange
    - X.509 certificates are exchanged
    - A server key may be exchanged depending on exchange protocol
    - Key exchange methods supported:
      - RSA, Diffie-Hellman, Fortezza
  - Client Authentication and Key Exchange
  - Finish
    - Use Change Cipher Protocol to change from key exchange cipher to encryption cipher
    - Send final finish message to check that encryption cipher is correct

### **SSL Handshake Protocol**



### **SSL Handshake Protocol**



#### SSL and HTTPS

- Secure web transfer is a key application of SSL
  - HTTPS is simple HTTP using SSL
- HTTP servers normally accept connections on port 80
- HTTPS servers accept connections on port 443
  - The Web Server that supports SSL (e.g. Apache) must be configured with a public key certificate
    - Certificate should be signed by a CA for public use
    - Web browser can the verify the certificate from its in-built list of CAs