CSS322

Key Management

Key Management and Distribution

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 23 January 2011
CSS322Y10S2L12, Steve/Courses/CSS322/Lectures/key.tex, r1640

CSS322

Contents

Key Management

Key Distribution

Key Distribution and Management

%2 Key Distribution and Management

Key Management

» Symmetric key cryptography: fast implementations,
good for encrypting large amounts of data; requires
shared secret key

Key Distribution

» Asymmetric (public) key cryptography: inefficient for
large data, good for authentication; no need to share a
secret

» How to share symmetric keys?

» How to distribute public keys?

CSS322

Contents

Key Management

Symmetric with
Symmetric

Symmetric Key Distribution using Symmetric Encryption

CSS322

Symmetric Key Distribution using Symmetric
Encryption

Key Management

Symmetric with » Objective: two entities share same secret key

Symmetric

» Principle: change keys frequently
» How to exchange a secret key?
1. A physically delivers key to B
2. Third party, C, can physically deliver key to A and B
3. If A and B already have a key, can securely transmit
new key to each other, encrypted with old key
4. If A and B have secure connection with third party C, C
can securely send keys to A and B
» Option 1 and 2: manual delivery; feasible if number of
entites is small (link encryption)

» Option 3: requires initial distribution of key; discovery
of initial key releases all subsequent keys

» Option 4: requires initial distribution of key with C;
practical for large-scale systems (end-to-end encryption)

CSS322

Link Encryption vs End-to-End Encryption

Key Management

Link Encryption

Symmetric with
Symmetric

v

Encrypt data over individual links in network

v

Each link end-point shares a secret key

v

Decrypt/Encrypt at each device in path

v

Requires all links/devices to support encryption

End-to-End Encryption

» Encrypt data at network end-points (e.g. hosts or
applications)

» Each pair of hosts/applications share a secret key

> Does not rely on intermediate network devices

o How Many Keys Need To Be Exchanged?

Key Management

Symmetric with
Symmetric

» Link-level encryption?
» End-to-end encryption between hosts?

» End-to-end encryption between applications?

CSS322

Using a Key Distribution Centre

Key Management

» Key Distribution Centre (KDC) is trusted third party
SV » Hierarchy of keys used:
SymmIie » Data sent between end-systems encrypted with
temporary session key
» Session keys obtained from KDC over network;
encrypted with master key
» Master keys can be distributed using manual delivery

¥ Use of a Key Hierarchy

Key Management

- ~
Symmetric with , < N
Symmetric Data f I minininEnEnln I \. Cryptogr‘flphic
v 4 P Protection
N - - - - = _’ - 7
P -7 T =<
Session Keys (EB:H:B]) Cryptographic
SN - Protection

Master Keys g |:|_ D‘ \ Non-Cryptographic
N / Protection

CSS322

Key Distribution Scenario

Key Management

Symmetric with Key

Vi ic wi e .

Symmetric Distribution
Center (KDC)

(1) ID4 N IDR I Ny

Key distribution (2) E(Ky, [Ks 11D 4 IDR | Ny D) I E(Kp, [K 1 IDAD)

steps

(3) E(Kp, [K; Il ID 4])

T

Responder
/ B
) E(K;. No)

(5) E(Ky. f(N7))

Initiator
A

Authentication
steps

CSS322

KDC Scenario Notation

End-systems: A and B, identified by /D4 and IDg
Master keys: K;, K
Session key (between A and B): K

Nonce values: Np, N,

» E.g. timestamp, counter, random value
» Must be different for each request
» Must be difficult for attacker to guess

Key Management

v

v

Symmetric with
Symmetric

v

v

cosa Practical Considerations

Key Management

Hierarchical Key Control

Symmetric with

SymEE » Use multiple KDCs in a hierarchy

» E.g. KDC for each LAN (or building); central KDC to
exchange keys between hosts in different LANs

» Reduces effort in key distribution; limits damage if local
KDC is compromised

Session Key Lifetime

» Shorter lifetime is more secure; but increases overhead
of exchanges

» Connection-oriented protocols (e.g. TCP): new session
key for each connection

» Connection-less protocols (e.g. UDP/IP): change after
fixed period or certain number of packets sent

CSS322

Decentralised Key Distribution

Key Management

» Alternative that doesn't rely on KDC

S Rl » Each end-system must manually exchange n — 1 master
Symmetie keys (Km) with others

/”"“’ foat \A

Initiator Responder
A B

v\m E(Kyp, [Ks 1 ID4 1 ID 11 f(N1) | Ny 1) /
(3) E(K;, f(N2))

CSS322

Contents

Key Management

Symmetric with
Asymmetric

Symmetric Key Distribution using Asymmetric Encryption

CSS322

Symmetric Key Distribution using Asymmetric
Encryption

Key Management

» Asymmetric encryption generally too slow for encrypting
large amount of data

Symmetric with
Asymmetric

» Common application of asymmetric encryption is
exchanging secret keys
» Three examples:

1. Simple Secret Key Distribution

2. Secret Key Distribution with Confidentiality and
Authentication

3. Hybrid Scheme: Public-Key Distribution of KDC Master
Keys

= Simple Secret Key Distribution

Key Management

» Simple: no keys prior to or after communication
» Provides confidentiality for session key

» Subject to man-in-the-middle attack

Symmetric with
Asymmetric

» Only useful if attacker cannot modify/insert messages

//_(1) PUallIDA \
B
‘k(z) E(PU,, K\)——'/

A

s Man-in-the-Middle Attack

Key Management

Symmetric with
Asymmetric

CSS322

Secret Key Distribution with Confidentiality and
Authentication

Key Management

» Provides both confidentiality and authentication in
exchange of secret key

(1) E(PU,,, [Ny 1 ID4])

Initiator Responder

A B
\s(m E(PUj, Ny) _’—7

(4) E(PU,.E(PR,. K)))

Symmetric with
Asymmetric

“*2 Hybrid Scheme: Public-Key Distribution of KDC
T Master Keys

» Use public-key distribution of secret keys when
exchaning master keys between end-systems and KDC

Symmetric with

Asymmetric » Efficient method of delivering master keys (rather than
manual delivery)

» Useful for large networks, widely distributed set of users
with single KDC

CSS322

Contents

Key Management

Public Keys

Distribution of Public Keys

2 Distribution of Public Keys

Key Management

» By design, public keys are made public

» Issue: how to ensure public key of A actually belongs to
A (and not someone pretending to be A)
» Four approaches for distributing public keys

Public Keys 1. Public announcement
Publicly available directory
Public-key authority
Public-key certificates

N

CSS322

Public Announcements

Key Management

» Make public key available in open forum: newspaper,
email signature, website, conference, ...

» Problem: anyone can announce a key pretending to be
another user

Public Keys

PU, PUp
U “py,

/P
N i

PU, PU,

o932 Publicly Available Directory

Key Management

v

All users publish keys in central directory

v

Users must provide identification when publishing key

» Users can access directory electronically

v

Weakness: directory must be secure
Public Keys

PU, PUp

CSS322

Public-Key Authority

Key Management
» Specific instance of using publicly available directory
» Assume each user has already security published
public-key at authority; each user knows authorities
public key

Public Keys

Public- key

/ Authority
(1) Request Il 7, / (4) Request Il 7,

(2) E(PRyyh, [PUp Il Request Il T])

(5) E(PR . [PU, I Request Il T5])

/- O PO LIDATMD \\“

Initiator Responder

\ (6) E(PUq, [Ny y
(7) E(PU,, N>)

Css322 Pub“C_Key Authority

Key Management

» First 5 messages are for key exchange; last 2 are
authentication of users

» Although 7 messages, public keys obtained from
authority can be cached

Pl s » Problem: authority can be bottleneck

» Alternative: public-key certificates

cose Public-Key Certificates

Key Management
» Assume public keys sent to CA can be authenticated by
CA; each user has certificate of CA

Certificate

Public Keys / Auth()]‘lty \

=E(PRyyu, [T n IDA Il PU,]) \
Cp =E(PRuw, [T 1 IDg || PU))
(I)CA

v¥m CB—""/

cose Public Key Certificates

Key Management
» A certificate is the ID and public-key of a user signed by
CA
Ca= E(PRautha [TH/DAHPUa])

» Timestamp T validates currency of certificate

Public Keys (expiration date)

» Common format for certificates is X.509 standard (by
ITU)

v

S/MIME (secure email)

IP security (network layer security)
SSL/TLS (transport layer security)
SET (e-commerce)

vV vy

CSS322

Contents

Key Management

X.509

X.509 Certificates

X.509

o X.509 Certificates

Key Management

» Each user has a certificate, although it is created by the
Certificate Authority (CA)

» Certificates are stored in a public directory

» Certificate format includes:

|

vV vy vV vV VvYY

Version of X.509 certificate
Signature algorithm

CA’s name and unique identifier
Period of validity

User's name and unique identifier
User's public key information
Signature

CSS322

Key Management

Unsigned certificate:

contains user ID,
user's public key

Public-Key Certificate Use

X.509

Generate hash
code of unsigned
certificate

Encrypt hash code
with CA's private key
to form signature

__—’—V

Bob's ID
information
Bob's public key y

D%
Recipient can verify

o cal signature by comparing

information hash code values

»—12272

Signed certificate

Decrypt signature
with CA's public key
to recover hash code

Create signed
digital certificate

v\/

Use certificate to
verify Bob's public key

CSS322

X.509 Formats

Key Management

Version

Certificate
Serial Number

Signature { Al

algorithm
identifier

parameters

X.509 Issuer Name

Period of { not before

validity) (777777 notafter |

Subject Name

Subject’s ¢ [gorithms _____]
publickey X |~ """~ parameters
info

key

Issuer Unique
Identifier
Subject Unique
Identifier

Extensions

. —____ 2lgorithms __ |
Signature parameters

encrypted hash

CSS322

Certificate Revocation List

Key Management

» Certificates may be revoked before expiry
» CA signs a CRL, which is stored in public directory

Signature -
algorithm < |- - - - - a l_g:) l:“_h_nl ______
identifier parameters
e Issuer Name
This Update Date
Next Update Date

certificate)|~ revocation date |

Revoked user certificate serial #
revocation date

.

Revoked user certificate serial #
certificate revocation date
algorit]
Signature T~ 777 parameters_ ___ |

encrypted

S Multiple Certificate Authorities

Key Management
» Multiple CA’s can be arranged in hierarchy
» Notation: Y << X >> certificate of X issued by CA'Y

X.509

Y<<Z>>
Z<<Y>>
Z<<X>>

W<<X>>|
X<<W>>|
X<<Z>>

	Key Distribution and Management
	Symmetric Key Distribution using Symmetric Encryption
	Symmetric Key Distribution using Asymmetric Encryption
	Distribution of Public Keys
	X.509 Certificates

