
CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Psuedorandom Numbers and Stream Ciphers

CSS322: Security and Cryptography

Sirindhorn International Institute of Technology
Thammasat University

Prepared by Steven Gordon on 31 October 2012
CSS322Y12S2L05, Steve/Courses/2012/s2/css322/lectures/random.tex, r2531



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Contents

Principles of Pseudorandom Number Generation

Psuedorandom Number Generators

PRNGs using Block Ciphers

Stream Ciphers

RC4



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Random Numbers

Use of Random Numbers

I Key distribution and authentication schemes

I Generation of session keys or keys for RSA

I Generation of bit stream for stream ciphers

Randomness

I Uniform distribution: frequency of occurrence of 1’s and
0’s approximately equal

I Independence: no subsequence can be inferred from
others

Unpredictability

I Hard to predict next value in sequence



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

TRNG, PRNG and PRF

True Random Number Generator

I Nondeterministic source, physical environment

I Detect ionizing radiation events, leaky capacitors,
thermal noise from resistors or audio inputs

I Mouse/keyboard activity, I/O operations, interrupts

I Inconvenient, small number of values

Pseudo Random Number Generator

I Deterministic algorithms to calculate numbers in
“relatively random” sequence

I Seed is algorithm input

I Produces continuous stream of random bits

Pseudo Random Function

I Same as PRNG but produces string of bits of some
fixed length



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Random and Pseudorandom Number Generators



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Requirements of PRNG

Hard to determine psuedorandom stream if don’t know seed
(but know algorithm)

I Randomness
I Test for uniformity, scalability, consistency
I Examples: Frequency, runs, compressability

I Unpredictability
I Forward and backward unpredictability

I Seed must be secure
I Use TRNG to generate seed



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Generation of Seed Input to PRNG



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Contents

Principles of Pseudorandom Number Generation

Psuedorandom Number Generators

PRNGs using Block Ciphers

Stream Ciphers

RC4



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Linear Congruential Generator

Parameters:

I m, the modulus, m > 0

I a, the multiplier, 0 < a < m

I c , the increment, 0 ≤ c < m

I X0, the seed, 0 ≤ X0 < m

Generate sequence of pseudorandom numbers, {Xn}:

Xn+1 = (aXn + c) mod m

Choice of a, c and m is important:

I m should be large, prime, e.g. 231 − 1

I If c=0, few good values of a, e.g. 75 = 16807

If attacker knows parameters and one number, can easily
determine subsequent numbers



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Blum Blum Shub Generator

Parameters:

I p, q: large prime numbers such that p ≡ q ≡ 3 (mod 4)

I n = p × q

I s, random number relatively prime to n

Generate sequence of bits, Bi :

X0 = s2 mod n

for i = 1→∞
Xi = (Xi−1)2 mod n

Bi = Xi mod 2

Cryptographically secure pseudorandom bit generator



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Example Operation of BBS Generator

n = 192649 = 383× 503, s = 101355

i Xi Bi

0 20749
1 143135 1
2 177671 1
3 97048 0
4 89992 0
5 174051 1
6 80649 1
7 45663 1
8 69442 0
9 186894 0
10 177046 0

i Xi Bi

11 137922 0
12 123175 1
13 8630 0
14 114386 0
15 14863 1
16 133015 1
17 106065 1
18 45870 0
19 137171 1
20 48060 0



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Contents

Principles of Pseudorandom Number Generation

Psuedorandom Number Generators

PRNGs using Block Ciphers

Stream Ciphers

RC4



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

PRNG Mechanisms Based on Block Ciphers

Use symmetric block ciphers (e.g. AES, DES) to produce
pseudorandom bits

I Seed is encryption key, K , and value V (which is
updated)

Counter Mode

OFB Mode



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

ANSI X9.17 PRNG

Cryptograhpically secure PRNG using Triple DES
Parameters:

I 64-bit date/time representation, DTi

I 64-bit seed value, Vi

I Pair of 56-bit DES keys, K1 and K2

Operation:

I Uses Triple DES three times

I (see next slide)

Output:

I 64-bit pseudorandom number, Ri

I 64-bit seed value, Vi+1



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

ANSI X9.17 PRNG



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Contents

Principles of Pseudorandom Number Generation

Psuedorandom Number Generators

PRNGs using Block Ciphers

Stream Ciphers

RC4



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Stream Ciphers

Encrypt one byte at a time by XOR with pseudorandom byte

Output of generator is called keystream



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Design Criteria for Stream Ciphers

Important Considerations

I Encryption sequence should have large period

I Keystream should approximate true random number
stream

I Key must withstand brute force attacks

Comparison to Block Ciphers

I Stream ciphers often simpler to implement, faster

I Block ciphers can re-use keys



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Contents

Principles of Pseudorandom Number Generation

Psuedorandom Number Generators

PRNGs using Block Ciphers

Stream Ciphers

RC4



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

RC4

I Designed by Ron Rivest in 1987

I Used in secure web browsing and wireless LANs

I Very simple and efficient implementation

I Can use variable size key: 8 to 2048 bits
I Several theoretical limitations of RC4

I No known attacks if use 128-bit key and discard initial
values of stream

I RC4 is used in WEP (shown to be weak security for
wireless LANs)—problem with how keys are used, not
RC4 algorithm



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

RC4 Algorithm

Parameters and Variables

I Variable length key, K , from 1 to 256 Bytes

I State vector, S , 256 Bytes

I Temporary vector, T , 256 Bytes

I A byte from keystream, k , generated from S

Steps

1. Initialise S to values 0 to 255; initialise T with
repeating values of key, K

2. Use T to create initial permutation of S

3. Permutate S and generate keystream, k from S

4. Encrypt a byte of plaintext, p, by XOR with k



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Initial State of S and T

for i = 0 to 255 do

S[i] = i;

T[i] = K[i mod keylen];



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Initial Permutation of S

j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);



CSS322

Random Numbers

Principles

PRNGs

PRNG+Block

Stream Ciphers

RC4

Stream Generation

i, j = 0;

while (true)

i = (i + 1) mod 256;

j = (J + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;

k = S[t];

To encrypt: C = p XOR k
To decrypt: p = C XOR k


	Principles of Pseudorandom Number Generation
	Psuedorandom Number Generators
	PRNGs using Block Ciphers
	Stream Ciphers
	RC4

