
Transmission Control Protocol

ITS 413 – Internet Technologies and
Applications

ITS 413 - Transmission Control Protocol 2

Contents
• Review of TCP Services and Features
• Connection Management
• Error Detection and Recovery
• Flow Control
• Congestion Control
• Performance Issues
• TCP for Wireless Networks

ITS 413 - Transmission Control Protocol 3

TCP Services
• Reliable stream transport service

– Stream of bits (or bytes) flow between end-points
• Stream is unstructured

– Virtual circuit connection
• Set up a connection before sending data

– Buffered transfer
• Applications generate any sized messages
• TCP may buffer messages until large datagram is formed
• Option to force (push) the transmission

– Full duplex connection
– Reliability

• Positive acknowledgement with retransmission

4

TCP Message Format
• 24 byte header + Data = segment

– Header Length needed because Options field varies in length
– Code Bits: indicate meaning of segment (SYN, ACK, URG, …)
– Urgent Pointer: position in segment where urgent data ends
– Checksum uses pseudo-header like UDP
– Options: max segment size, window scaling, SACK, …

Source PortSource Port

HdrHdr LenLen

Destination PortDestination Port

Sequence NumberSequence Number

Acknowledgement NumberAcknowledgement Number

WindowWindow

Urgent PointerUrgent PointerChecksumChecksum

Code BitsCode BitsReservedReserved

DataData

……

Options (if any)Options (if any) PaddingPadding

ITS 413 - Transmission Control Protocol 5

Segments, Bytes and Sequence Numbers

• TCP messages send are called segments
• But TCP operates on a stream of bytes

– Sliding windows and sequence numbers refer to bytes (not
segments or messages)

6

Connection Management
• Establishing a connection:

– Three-way handshake
• Both sides ready to transmit
• Agree upon initial sequence numbers

– Ensure no segments from previous connection accepted
• Closing a connection:

– Each side can close connection
• One direction can be closed, the other can be active

• Code Bits indicate segment type in connection management:

Type Description
SYN Synchronise sequence numbers
ACK Acknowledge data
FIN Sender is finished sending data
RST Reset connection
PSH Push data to receiver asap
URG Use urgent pointer field

ITS 413 - Transmission Control Protocol 7

Ports and Connections
• TCP uses (host, port) pair for source and destination as

connection identifier
– Source IP: 61.47.67.136; Port: 1045
– Destination IP: 64.233.189.184; Port: 80

• Allows for many TCP connections to same port on same
machine
– E.g. web server on port 80 can accept multiple incoming

connections

• TCP allows for passive and active open of connections
– Passive: wait for incoming connection, e.g. web server
– Active: start incoming connection, e.g. web browser

ITS 413 - Transmission Control Protocol 8

TCP Three-way Handshake

• Handshake synchronises sequence numbers used by both
machines

• Handles the loss of messages and receiving duplicates from old
connections

• Can send data with the initial SYN packets (not shown above)

ITS 413 - Transmission Control Protocol 9

Closing TCP Connection

• Program issues the close() command for graceful close
• Can close in one direction, but still open in other direction
• Also possible for connection reset (abort)

10

TCP State Machine CLOSED

LISTEN

ESTAB-
LISHED

SYN
SENT

CLOSE
WAIT

LAST
ACK

SYN
RECVD

FIN
WAIT-1

FIN
WAIT-2

TIMED
WAIT

CLOSING

begin

close active open / syn

anything / reset

syn / syn + ack

reset

syn / syn + ack

ack / -

fin / ack

fin-ack / ack
ack / -

fin / ack

close / fin
close / fin

fin / ack

syn + ack / ack

send / syn

timeout / reset

ack / -

passive
open

ack / -

close / fin

close / -

timeout after 2 segment lifetimes

ITS 413 - Transmission Control Protocol 11

Data Transfer in TCP
• Once a connection is opened:

– Need reliable delivery of DATA
• Acknowledgements and retransmissions

– Do not overflow the receivers
• Flow control

– Do not overflow the network (e.g. routers along the path)
• Congestion control

• TCP using a sliding window mechanism
– For efficient transmissions
– To avoid overflow of receivers and network

ITS 413 - Transmission Control Protocol 12

TCP Sliding Window
• Operates on the byte level, not segment

– Three pointers (P1, P2, P3) to bytes in the data stream
• Sender and receiver maintain windows for each direction

• Variable sized window, based on advertised window

11 22 33 44 55 66 77 88 99 1010 1111

Current windowCurrent window

Sent andSent and
ACKedACKed

Sent but Sent but
not not ACKedACKed

SendSend
withoutwithout
delaydelay

Send when Send when
in windowin windowP1P1 P2P2 P3P3

ITS 413 - Transmission Control Protocol 13

ACK with Retransmit
• Timer started by sender for each segment transmitted
• Receiver sends cumulative acknowledgement for each segment

received
– Sequence number of next byte expected to receive

• If byte with sequence number 1000 received, ACK will indicate 1001 as next
expected byte

• If timer expires, segment is retransmitted
• Improvement - Fast Retransmit:

– If 3 duplicate ACKs received, retransmit
– No need to wait for timeout

• In practice, implementations may be different than above (to avoid
many timers) – but same principle

14

TCP Retransmission
Host AHost A Host BHost B

1K Data (SEQ=1024)1K Data (SEQ=1024)

1K Data (SEQ=3072)1K Data (SEQ=3072)
1K Data (SEQ=4096)1K Data (SEQ=4096)
1K Data (SEQ=5120)1K Data (SEQ=5120)

1K Data (SEQ=0)1K Data (SEQ=0)

ACK (1024)ACK (1024)
ACK (2048)ACK (2048)

ACK (2048)ACK (2048)
ACK (2048)ACK (2048)
ACK (2048)ACK (2048)

ACK (6144)ACK (6144)

Ti
m

er
Ti

m
er

1K Data (SEQ=2048)1K Data (SEQ=2048)

Lost segmentLost segment

Retransmitted segmentRetransmitted segment

15

Fast Retransmit
Host AHost A Host BHost B

1K Data (SEQ=1024)1K Data (SEQ=1024)

1K Data (SEQ=3072)1K Data (SEQ=3072)
1K Data (SEQ=4096)1K Data (SEQ=4096)
1K Data (SEQ=5120)1K Data (SEQ=5120)

1K Data (SEQ=0)1K Data (SEQ=0)

ACK (1024)ACK (1024)
ACK (2048)ACK (2048)

ACK (2048)ACK (2048)
ACK (2048)ACK (2048)
ACK (2048)ACK (2048)

ACK (6144)ACK (6144)

Ti
m

er
Ti

m
er

1K Data (SEQ=2048)1K Data (SEQ=2048)

Lost segmentLost segment

Third Duplicate ACKThird Duplicate ACK
Retransmitted segmentRetransmitted segment

ITS 413 - Transmission Control Protocol 16

Estimating Timeouts
• TCP doesn’t know how long it takes for ACK to be received

– End-to-end path may contain various link layer technologies and various
routers

– Queuing at routers depends upon network traffic
• TCP monitors path performance and estimates timeouts

– Estimate RTT:
RTT = αoldRTT + (1- α)NewRTTSample
• α - typically 7/8
Timeout = RTT + 4*D
• D = αD + (1- α) | RTT – M |

– | RTT – M | is difference between expected & observed RTT
– α may not be same as α used above

– Karn’s algorithm: do not update RTT on retransmitted segments;
instead Timeout doubled on each failure until success

ITS 413 - Transmission Control Protocol 17

Timer Estimation Examples

Original RFC793 RTT estimation algorithm

Updated Van Jacobson
estimation

ITS 413 - Transmission Control Protocol 18

Flow Control
• Aim: Prevent sender from overrunning capacity of receivers
• Needed because:

– Application cannot keep up with incoming data
– TCP cannot keep up with incoming segments

• Must take into account:
– Variable end-to-end round trip times (RTT)
– Interactions between TCP and IP and application protocols

• General options for flow control:
– Discard segments that overflow
– Refuse to accept packets from IP
– Sliding window protocol (withholding ACKs)

• All result in retransmissions that consume bandwidth

• TCP flow control
– Receiver notifies sender of amount of buffer space left
– Advertised Window (window field in TCP header)

ITS 413 - Transmission Control Protocol 19

Flow Control Example

2K Data (SEQ=0)
2K Data (SEQ=0)

ACK=2048, WIN=2048
ACK=2048, WIN=2048

Host AHost A Host BHost B 4K buffer4K buffer

2K Data (SEQ=2048)
2K Data (SEQ=2048)

ACK=4096, WIN=0
ACK=4096, WIN=0

ACK=4096, WIN=2048
ACK=4096, WIN=2048

1K Data (SEQ=4096)
1K Data (SEQ=4096)

App writes 2KApp writes 2K

App writes 3KApp writes 3K

Sender may sendSender may send
up to 2Kup to 2K

App reads 2KApp reads 2K
Sender isSender is
blockedblocked

ITS 413 - Transmission Control Protocol 20

Congestion Control
• Flow control protects slow receiver from a fast sender
• Congestion control protects the network from a fast sender
• Without congestion control:

– To transport protocol, congestion is seen as increased delay
– Increased delay results in more retransmissions
– More retransmissions results in more congestion
– Leads to congestion collapse

• TCP Congestion Control
– Implicit congestion detection: loss of segments imply congestion
– Slow Start
– Multiplicative Decrease
– Maintain second congestion window at sender
– Allowed window = minimum (advertised window, congestion window)

ITS 413 - Transmission Control Protocol 21

TCP Congestion Control

0
10

20
30
40

50
60

70
80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transmission Number

C
on

ge
st

io
n

W
in

do
w

 (k
ilo

by
te

s)

Slow Start Threshold (Slow Start Threshold (ssthreshssthresh))

Advertised Receiver Window (Advertised Receiver Window (rcvwndrcvwnd))

Congestion AvoidanceCongestion Avoidance

Slow StartSlow Start

Slow start: increase by number of bytes ACKed. Effectively
exponential increase.
Avoidance: At most, increase by 1 segment per RTT. Effectively a
linear increase.

ITS 413 - Transmission Control Protocol 22

Why Slow Start?
Without slow start; large bursts

but many retransmissions

With slow start;
no retransmissions

ITS 413 - Transmission Control Protocol 23

Reaction to Congestion
• Errors (segment loss) is taken as congestion indication
• Response to congestion event:

– TCP Tahoe (1988)
• Set ssthresh to half current congestion window
• Set congestion window to 1 segment
• Re-start slow start phase

– TCP Reno (1990) – Fast Recovery
• After Fast Retransmit, set ssthresh and congestion window to half current

congestion window
• Enter congestion avoidance phase
• Sender retransmits at most 1 dropped packet per RTT

– TCP NewReno (1995)
• Only half congestion window once when multiple segments lost from

transmitted window
– Packets 1-10 are sent; 4, 6 and 7 lost
– Congestion window halved when 4 retransmitted
– Congestion window unaltered when 6 and 7 retransmitted

ITS 413 - Transmission Control Protocol 24

TCP Reno Congestion Control

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transmission Number

C
on

ge
st

io
n

W
in

do
w

 (k
ilo

by
te

s) ssthreshssthresh

Slow Start Threshold (Slow Start Threshold (ssthreshssthresh))

Slow StartSlow Start

Congestion AvoidanceCongestion Avoidance

Lost SegmentLost Segment

ITS 413 - Transmission Control Protocol 25

TCP Versions and Options
• TCP RFC 793 (1981)

– Reliability (sequence numbers), Flow control (receiver window),
Connection management

• TCP Tahoe (1988)
– Adds Slow Start, Congestion Avoidance, Fast Retransmit

• TCP Reno (1990)
– Adds Fast Recovery

• TCP NewReno (1995)
– Only halves congestion window once

• Other Options:
– Selective Acknowledgement (SACK)
– TCP Vegas

	Transmission Control Protocol
	Contents
	TCP Services
	TCP Message Format
	Segments, Bytes and Sequence Numbers
	Connection Management
	Ports and Connections
	TCP Three-way Handshake
	Closing TCP Connection
	TCP State Machine
	Data Transfer in TCP
	TCP Sliding Window
	ACK with Retransmit
	TCP Retransmission
	Fast Retransmit
	Estimating Timeouts
	Timer Estimation Examples
	Flow Control
	Flow Control Example
	Congestion Control
	TCP Congestion Control
	Why Slow Start?
	Reaction to Congestion
	TCP Reno Congestion Control
	TCP Versions and Options

